Designing a Unique
Single Point

Cross Over Method

Thesis Project

Student Richard Phillip Wilson
Advisor : Dr. Clinton Lee
Professor: Abdollah Homaifar

Introduction

The idea behind GA’s is to extract optimization strategies nature uses successfully -
known as Darwinian Evolution - and transform them for application in mathematical
optimization theory to find the global optimum in a defined phase space.

One could imagine a population of individual "explorers” sent into the optimization
phase-space. Each explorer is defined by its genes, what means, its position inside the
phase-space is coded in his genes. Every explorer has the duty to find a value of the
quality of his position in the phase space. (Consider the phase-space being a number of
variables in some technological process, the value of quality of any position in the phase
space - in other words: any set of the variables - can be expressed by the yield of the
desired chemical product.) Then the struggle of "life" begins. The three fundamental
principles are

1.Selection
2.Mating/Crossover
3.Mutation

Only explorers (= genes) sitting on the best places will reproduce and create a new
population. This is performed in the second step (Mating/Crossover). The "hope” behind
this part of the algorithm is, that "good" sections of two parents will be recombined to yet
better fitting children. In fact, many of the created children will not be successful (as in
biological evolution), but a few children will indeed fulfill this hope. These "good"
sections are named in some publications as building blocks.

Now there appears a problem. Repeating these steps, no new area would be explored. The
two former steps would only exploit the already known regions in the phase space, which
could lead to premature convergence of the algorithm with the consequence of missing
the global optimum by exploiting some local optimum.

The third step - the Mutation ensures the necessary accidental effects. One can imagine
the new population being mixed up a little bit to bring some new information into this set
of genes.

Whereas in biology a gene is described as a macro-molecule with four different bases to
code the genetic information, a gene in genetic algorithms is usually defined as a bitstring
(a sequence of b 17s and 07s). (1)

2.Genetic Algorithms

Initial Population

As described previously, a gene is a string of bits. The initial population of genes
(bitstrings) is usually created randomly. The length of the bitstring is depending on the
problem to be solved.

Selection

Selection means to extract a subset of genes from an existing (in the first step, from the
initial -) population, according to any definition of quality. In fact, every gene must have
a meaning, so one can derive any kind of a quality measurement from it - a "value".
Following this quality "value" (fitness), Selection can be performed

e.g. by Selection proportional to fitness:

1.Consider the population being rated, that means: each gene has a related fitness.
The higher the value of the fitness, the better.

2.The mean-fitness of the population will be calculated.

3.Every individuum (=gene) will be copied as often to the new population, the
better it fitness is, compared to the average fitness. E.g.: the average fitness is
5.76, the fitness of one individuum is 20.21.

4.Following this steps, one can prove, that in many cases the new population will
be a little smaller, than the old one. So the new population will be filled up with
randomly chosen individual from the old population to the size of the old one.

Remember, that there are a lot of different implementations of these algorithms. For
example the Selection module is not always creating constant population sizes. In some
implementations the size of the population in dynamic. Furthermore, there exist a lot of
other types of selection algorithms (the most important ones are: Proportional Fitness,
Binary Tournament, Rank Based)..

Mating/Crossover
Parents
1 1 0 0 1 1 1 1
0 0 1 0 | 1 0 1
A
Children

—
p—
o
o

0
0 1 0 1 0 1 1 1

Pt
[—,
]

Fig.2. Crossover

The next steps in creating a new population are the Mating and Crossover: As described
in the previous section there exist also a lot of different types of Mating/Crossover. One
easy to understand type is the random mating with a defined probability and the b_nX
crossover type. This type is described most often, as the parallel to the Crossing Over in
genetics is evident:

1.PM percent of the individua of the new population will be selected randomly and
mated in pairs.

2.A crossover point (see fig.2) will be chosen for each pair

3.The information after the crossover-point will be exchanged between the two
individua of each pair.

In fact, more often a slightly different algorithm called b_uX is used. This crossover type
usually offers higher performance in the search.

1.PM percent of the individua of the new population will be selected randomly and
mated in pairs.

2.With the probability PC, two bits in the same position will be exchanged between the
two individua. Thus not only one crossover point is chosen, but each bit has a certain
probability to get exchanged with its counterpart in the other gene. (This is called the
uniform operator)

Mutation

Fig.3. Mutation

The last step is the Mutation, with the sense of adding some effect of exploration of the
phase-space to the algorithm. The implementation of Mutation is - compared to the other
modules - fairly trivial: Each bit in every gene has a defined Probability P to get inverted.

¢y

3.Motivation of my method

The search space for the traveling salesman problem is the set of permutations of the
cities. The most natural way to represent a tour is through path representation, where
the cities are listed in the order in which they are visited . As an example of path
representation, assume that there are six cities: {1, 2, 3, 4,5,6}. The tour denoted by {1 2
34 56) would be interpreted to mean that the salesman visits city lfirst, city 2 second,
city 3 third ,..., returning to city 1 from city 6. Although this representation seems
natural enough, there are at least two drawbacks to it. The first is that it is not unique.
For example, (234 56 1) and (34 5 6 1 2) actually represents the same tour as (123 4 5
6); that is, the representation is unique only as far as the direction of traversal — clockwise
or counterclockwise- and the originating city. This representational ambiguity generally
confounds the GA. The second drawback is that a simple crossover operator could fail to
produce legal tours. For example, The following strings with cross site 3 fail to produce
legal tours. For example, the following strings with the cross site 3 fail to produce legal
tours.(2)

Before crossover (1 2 3 4 5 6)
2 4 5 6 3 1)

A
After crossover (1 2 3 6 3 1)
2 4 5 4 5 6)

The two routes created after crossover are illegal because both go to at least one city
more than once. (2)

4.Currently used cross over operators which eliminate repetition
Goldbergs’s partially-mapped crossover (PMX)

The PMX uses a series of swapping to avoid duplication of cities. For example,
there are two tours (3):

Tour 1 a
Tour 2 b

oo

-

<]
0Q

=

¢!

o

One of the offsprings: b a h d e f c g

Davis’ order crossver(OX)

OX tries to maintain the original city order in the parents in the condition of no
duplication. For the same example as above(3)

Tour 1 a b c d e f g h
Tour 2 b d

—
0

aQ
=
(@]
(¢

One of the offsprings: a g h d e f c b
Oliver’s cycle crossover (CX)
CX creates a legal offspring where every position is occupied by a corresponding

element from one of the parents by finding and combing the cycles in the parents. For
the same example as above (3)

Tour 1 a b c d e f g h
Tour 2 b d f a g h c e
A A
One of the offsprings:

a b f d g h c e

5. Proposed crossover method

In my proposed method of crossover I use grouping in order to limit the search of
the repeated and missing cities of each child after an initial single point crossover of the
initial parent routes. I then replace the repeated cities randomly with the missing cities
found as a product of selection and crossover. Mutation has yet to be included. The
program written is designed for routes consisting of 2*n cities. Test included 16 cities.

When using 16 cities the first step is to create a population of routes with each
route consisting of cities 0-15 (decimal numbers are used to represent cities). For my
example I used a population of 512 routes. Then single point cross over is used to
produce children. Once the children are created each route is taken one at a time until the
repeated cities in each route are replaced with the missing cities in each route. Each city
is placed in one of four groups depending on whether city<4, 4<=city<8 , 8<=city<12 or
12<=city<15. Next the number of repeats and cities in each group is calculated. Based on
the fact that there should be a total of four cities in each group the fitness of a city in each
group is determined by the (need of its respected group)/(sum of group needs). Next the
search for missing cities began. Binary values are now used to represent cities decimal
equivalent. An initial population of 8 cities is randomly created. Based on the fitness of
each city the roulette wheel method determines how many of each city you will have in
your next population. The next population is now crossed over at random cross points
(probability of each city crossing with another city =1). After crossing the cities if the

fitness of a city which is calculated by the (need of its respected group)/(sum of group
needs) is >=the average fitness of the cities then that city is searched for in its respected
group. The cities searched for and not found are considered missing and are used to
replace the repeated cities. With the missing cities found used to replace repeated cities
your route will be closer to having no repeats. The previous process is continued until no
repeats are found in each route and all the routes go to the 16 distinct cities.

Conclusion

I have presented a method which may be used in any genetic algorithm problem which
uses a cross over that eliminates repetition and where each parent and child has to include
all elements of a population. The cross over method I proposed combines grouping

cross over and selection. Possible problems which may use this type of cross over are the
traveling salesman and the N-queen problem.

Further Research
The method I have proposed can be used for multiple points crossover methods. It allows

you to use any number of crossover points in the creation of each child. This versatility
will allow for a faster convergence to the optimum solution.

References

[1] http://gsprO3.tuwien.ac.at/~aschatt/info/ga/genetic.html#AlgoSelectionSubSec

[2]Homaifar,Guan, and Liepins, “Schema Analysis of the Traveling Salesman Problem
Using Genetic Algortihms”, pages 533-552 in Complex Systems Precedings (1992)

[3]Notes taken at NCA&T in ELEN-674-01

ANSIoATUN 91IS [V BUI[OIRD) YUON
Sureaurduy [eono9ry Jo judunreda
I91U9)) JueouIdur [0JIU0)) SnowouoINy

TeJTewoH Ye[[OPqV :10SIAPY
99T uouI) :IOSIAPY

UOS[IM PIeyory :juspms

AOHLAIN dHAOSSOYO NOSTIM

-9oeds aseyd paurjap e ur wnwndo [eqO[3 9y} pulj 01 A103)
uonezrundo [eonewayiew ul uonedijdde 10y woy) uLofsues)
pUB - UOTINJOAF UBTUIMIB(] SB UMOWY — AJ[NJSSIIINS SIsN

aImeu so139)e1s uoneznundo 10enx3 0] SIS, YO puryaq eapr ay],

uonodNpoIuf

UONBINIA[' €
IQA0SSOID)/SUNBIN'T

uono9es’|

sd9)S WLIOG[Y IJIUIN)

"90UO0 UBY) 9I0UI AJ10 QUO ISBI[I8 0) 03
)0q 9SNeI9q [BI[[I oI JIOAOSSOIO J3)Je PIJeald SN0l oml Sy,

9@ S V¥ @ &r)

(1 ® 9 ¢ TOTI T9A0SSOID IOV
\"4

a ¢ 9/¢ ¥ 0

9 ¢ y/ € 7 1) TOAOSSOID A10Jog

SHIOAA JIA0SSOI)) MOH

q 9 J] 9 p Yy 8 e:sSuudsyjoayljosup

3 ® y
o P/

O
Gt 2

y P 9 ¢ oy
a) _ q ®© I InO],

(¢)oa0qe se odwrexa aures 9y} J0
‘uoreardnp ou Jo UONIPUOd aY) Ul sjuared 9y UT JopIo AJ10 [RUISLIO Sy} UTRIUTEW 0) SO XO

(X ()IOASSOID I9pI0 SIAB(

JOAOSSOIO JUIOJ OM I, B JO o[durexy

*JOJ YOoIeas noA ey} SO0 JO SIQUINU) ST

poyjowx pasodoad AN

Surssmur 11 J1 995 01 A[WOpURI SANID YYD 0) dARY PINOA

WJLIOS[Y 2[}IUIL) JNOYIIM SINI)) SUISSIJA] SUIPUL] UO)|

K19A109dsa1 (6Z°GTTT) Y (8T 1°C) SN0 pajeador so1y 1sT pooe[day

€/1=(X)3
$ dnoin

BuISSIN T
0 pareaday
9 2ABH
anbrun § paaN

LT 1€ 0g 8C9C ST
Te> A>T
dnoin

(6C°STT1) YoIess JsI1j UT SONIO SUISSIUL ¢ punog

9/1=(x)3 €/1=(X)} 9/1=(X)J
¢ dnoin) ¢ dnoin 1 dnoin

SSomJ=SUISSTW [€101 / SUISSTUI=(X)]

SUISSTAL | SurssTl ¢ SuIsSTAL |
¢ pareadoy 7 pareadoy ¢ pareadoy
Q 9ABH Q 9ABH 01 2aeH
anbrun § paaN onbru) § pPaaN onbiun | PAAN

. | dd a4 d
I 8T LT £2TC0C 91 CLerI8VI0T 6 OvCGel10
yg> K10 >91 91>A10 58 g> L110 > ()
¢dnoin 7dnoin I dnoin

YoIeas 1SIL]

LC08SET8TOTSTEIBIVITE8STIC
ST LIPIOI96TCIIE0E€CCTOCIL ¥

I Py KD g¢ srdurexy

Initial Pop. Bin. To [f(x) f(x)/sum Exp. Ct. Actual Ct.

01001 .9 0.333 0.0833 1.333 1
10110 22 0.167 0.0412 0.667 1
10011 19 0.167 0.0412 0.667 0
01100 12 0.333 0.0833 1.333 2
10011 19 0.167 0.0412 0.667 1
01101 13 0.333 0.0833 1.333 1
01110 14 0.333 0.8333 1.333 2
10010 18 0.167 0.0412 1.333 0
01101 13 0.333 0.8333 0.667 1
11101 29 0.333 0.8333 1.333 2
10111 23 0.167 0.0412 0.667 0
00011 3 0.167 0.0412 0.667 1
11000 24 0.333 0.8333 1.333 1
00111 7 0.167 0.0412 0.667 1
10101 21 0.167 0.0412 0.667 1
11111 31 0.333 0.8333 1.333 1

First Selection of Mating Pool

Mating Pool After Cross Bin to Dec

0/1001

00110

1/0110 11001

01/100 01011

10/011

011/00
011/01

0111/0
0110/1

011/10
111/01

171000
0/0111

10/101
11/111

00011
11101

Search 9 cities (Highest Fitness)
Found 3 Missing (11,15, 29)

10100

01101
01100

01111
01100
01101
11110
10111
01000
10111
11101
00101
11011

11
20

13
12

15
12

13
30

F1(x)

0.17
0.33

0.17
0.33

0.33
0.33

0.33
0.33

0.33
0.33

0.17
0.33

0.17
0.33

0.17
0.33

€e€0=(X)2d

[SuIsSIN

0 1eadoy

[9ACH
anbru) § paN

(6T LT 1€ 0€ 8T 92 ST
 dnoin)

A1oAn0adsa1 ($Z°61) Yim (8°C) sonio pajeadar pasejdoy
($2°61) SNID) SUISSIN ¢ punoq

£€€'0=(x)2d 0=()zd €£€0=(0)Td
[SurssTy 0 SuISSI [SurssTy
0 1eadoy [18odoy 7 1eadoy
L 9ABH 6 9ARH 6 9ABH
anbrun § paoN onbiun g paaN anbrun) § paaN
d dd
(1281 L1€2220C91] [STZIEI8ITHIO0OI6] [9vTSE10]
¢ dnoin ¢ dnoin 1 dnoin

AIEN

Initial Pop. B.ToD. f(x)2

01001
10110
10011
01100
10011
01101
01110
10010
01101
11101
10111
00111
11000
00111
10101
11111

9
22
19
12
19
13
14
18
13
29
23

3
24

7
21
31

Second Selection of Mating Pool

0
0.33
0.33

0
0.33

0

0
0.33

0
0.33
0.33
0.33
0.33
0.33
0.33

0

f(x)2/sum f Exp. Ct. Act. Ct

0
0.1
0.1

0
0.1

0

0
0.1

0
0.1
0.1
0.1
0.1
0.1
0.1

0

0
1.6
1.6

—d —
oMo

—_ A A o
COODODODM®O»OO®»O

OMNMNMNDMNN--AN-OMNOCO -0 —-NO

“way) doedar 1snf pue 7 pIryo ur SONIO JUISSTW Y3 SB | PIIYD Ul sau1o pajeadar sy as)

LCO86T ET8COCSCEIBIVILYCOICIC
STLISTOI96TICIIE0E€CTCOCOT Y

[PIYD
AoAnoadsar (L'4T'61°62'S1°11) Aq paoerdar (1°8°6‘81p1°7) SouId pareadar im Anoy [euty

‘L a1 K10 pareadar pooejdoy
(L) K10 SurssTw Jse[punoq

0=(X)¢d 0=(X)¢A 0=()¢d 1=()¢d
0 SuIssIN 0 SurssTy 0 SuissIN I SuIssTA
0 Jeadoy 0 1eadoy 0 1eadoy I 1eadoy
L 9ARH Q 9ARH Q 9ABH Q 9A®RH
anbrun) § paaN anbru) § poaN onbrun g peoN anbru() § pooN
d
(62 L2 1€ 0€ 8297 ST ¥ [61 1281 L1 €22C0TOT] [STTIEI8TIT+I016] [9v TS €10]
$ dnoin ¢ dnoin 7 dnoin [dnoig

€ yoreos

Initial Pop. Bto D {3(x)

01001
10110
10011
01100
10011
01101
01110
10010
01101
11101
10111
00011
11000
00111
10101
11111

9
22
19
12
19
13
14
18
13
29
23

3
24

7
21
31

OO0 20200000000 0O0O

Third Selection Pool

£3(x)/sum 3(x)

o
OCO0OUIOUIOOOOOO0OOOOOO

o

Exp. Ct Act. Ct

OO WO MOOOOOOOOOOO

OO MWMOWMOOOO0OO0OO0O00O0O0O0o

Mating Pool Crossed BtoD f3(x)

0/0011 00111 7
0/0111 00011 3
00/111 00111 3
00/011 00011 7
000/11 00011 3
000/11 00011 3
0011/1 00111 7
0011/1 00111 7
000/11 00011 3
000/11 00011 3
00/111 00011 3
00/011 00111 7
0/0111 00011 3
0/0011 00111 7
001/11 00111 7
001/11 00111 7

Searched 2 cities (3, 7)
Found 1 missing (7)

Final Seach Missing Cities

Mating Pool Crossed BTOD F2(x)

/0110 1001
1/0011 1011

10/1101001
10/011 1011

100/10 1000
11101 1111

1001/0 1001
1011/1 1011

000/11 000 T

101/11 1011

11/000 1111
00/111 0000

/0101 1100
171000 1010

10/101 1011
00/111 0010

19
22

19
22

17
30

19
22

Repeated 19(3), 22(3), 23(2)

Search 11 Cities

Found 2 Missing (19, 24)

0.33
0.33

0.33
0.33

0.33
0.33

0.33
0.33

0.33
0.33

0.33
0.33

0.33
0.33

0.33
0.33

